Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 118(1): 35, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656238

RESUMO

Myocardial infarction (MI) is the leading cause of death worldwide. Glycogen synthase kinase-3 (GSK-3) has been considered to be a promising therapeutic target for cardiovascular diseases. GSK-3 is a family of ubiquitously expressed serine/threonine kinases. GSK-3 isoforms appear to play overlapping, unique, and even opposing functions in the heart. Previously, our group identified that cardiac fibroblast (FB) GSK-3ß acts as a negative regulator of fibrotic remodeling in the ischemic heart. However, the role of FB-GSK-3α in MI pathology is not defined. To determine the role of FB-GSK-3α in MI-induced adverse cardiac remodeling, GSK-3α was deleted specifically in the residential fibroblast or myofibroblast (MyoFB) using tamoxifen (TAM) inducible Tcf21 or Periostin (Postn) promoter-driven Cre recombinase, respectively. Echocardiographic analysis revealed that FB- or MyoFB-specific GSK-3α deletion prevented the development of dilative remodeling and cardiac dysfunction. Morphometrics and histology studies confirmed improvement in capillary density and a remarkable reduction in hypertrophy and fibrosis in the KO group. We harvested the hearts at 4 weeks post-MI and analyzed signature genes of adverse remodeling. Specifically, qPCR analysis was performed to examine the gene panels of inflammation (TNFα, IL-6, IL-1ß), fibrosis (COL1A1, COL3A1, COMP, Fibronectin-1, Latent TGF-ß binding protein 2), and hypertrophy (ANP, BNP, MYH7). These molecular markers were essentially normalized due to FB-specific GSK-3α deletion. Further molecular studies confirmed that FB-GSK-3α could regulate NF-kB activation and expression of angiogenesis-related proteins. Our findings suggest that FB-GSK-3α plays a critical role in the pathological cardiac remodeling of ischemic hearts, therefore, it could be therapeutically targeted.


Assuntos
Quinase 3 da Glicogênio Sintase , Infarto do Miocárdio , Humanos , Glicogênio Sintase Quinase 3 beta , Remodelação Ventricular , Infarto do Miocárdio/genética , Fibroblastos , Hipertrofia , Inflamação , Proteínas Angiogênicas
2.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166724, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37094727

RESUMO

Glycogen synthase kinase-3 (GSK-3) is a family of serine/threonine kinases. The GSK-3 family has 2 isoforms, GSK-3α and GSK-3ß. The GSK-3 isoforms have been shown to play overlapping as well as isoform-specific-unique roles in both, organ homeostasis and the pathogenesis of multiple diseases. In the present review, we will particularly focus on expanding the isoform-specific role of GSK-3 in the pathophysiology of cardiometabolic disorders. We will highlight recent data from our lab that demonstrated the critical role of cardiac fibroblast (CF) GSK-3α in promoting injury-induced myofibroblast transformation, adverse fibrotic remodeling, and deterioration of cardiac function. We will also discuss studies that found the exact opposite role of CF-GSK-3ß in cardiac fibrosis. We will review emerging studies with inducible cardiomyocyte (CM)-specific as well as global isoform-specific GSK-3 KOs that demonstrated inhibition of both GSK-3 isoforms provides benefits against obesity-associated cardiometabolic pathologies. The underlying molecular interactions and crosstalk among GSK-3 and other signaling pathways will be discussed. We will briefly review the specificity and limitations of the available small molecule inhibitors targeting GSK-3 and their potential applications to treat metabolic disorders. Finally, we will summarize these findings and offer our perspective on envisioning GSK-3 as a therapeutic target for the management of cardiometabolic diseases.


Assuntos
Cardiomiopatias , Quinase 3 da Glicogênio Sintase , Humanos , Glicogênio Sintase Quinase 3 beta , Miócitos Cardíacos/patologia , Isoformas de Proteínas/genética , Cardiomiopatias/patologia
3.
Circ Res ; 132(3): 267-289, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36625265

RESUMO

BACKGROUND: The tyrosine kinase inhibitor ponatinib is the only treatment option for chronic myelogenous leukemia patients with T315I (gatekeeper) mutation. Pharmacovigilance analysis of Food and Drug Administration and World Health Organization datasets has revealed that ponatinib is the most cardiotoxic agent among all Food and Drug Administration-approved tyrosine kinase inhibitors in a real-world scenario. However, the mechanism of ponatinib-induced cardiotoxicity is unknown. METHODS: The lack of well-optimized mouse models has hampered the in vivo cardio-oncology studies. Here, we show that cardiovascular comorbidity mouse models evidence a robust cardiac pathological phenotype upon ponatinib treatment. A combination of multiple in vitro and in vivo models was employed to delineate the underlying molecular mechanisms. RESULTS: An unbiased RNA sequencing analysis identified the enrichment of dysregulated inflammatory genes, including a multifold upregulation of alarmins S100A8/A9, as a top hit in ponatinib-treated hearts. Mechanistically, we demonstrate that ponatinib activates the S100A8/A9-TLR4 (Toll-like receptor 4)-NLRP3 (NLR family pyrin domain-containing 3)-IL (interleukin)-1ß signaling pathway in cardiac and systemic myeloid cells, in vitro and in vivo, thereby leading to excessive myocardial and systemic inflammation. Excessive inflammation was central to the cardiac pathology because interventions with broad-spectrum immunosuppressive glucocorticoid dexamethasone or specific inhibitors of NLRP3 (CY-09) or S100A9 (paquinimod) nearly abolished the ponatinib-induced cardiac dysfunction. CONCLUSIONS: Taken together, these findings uncover a novel mechanism of ponatinib-induced cardiac inflammation leading to cardiac dysfunction. From a translational perspective, our results provide critical preclinical data and rationale for a clinical investigation into immunosuppressive interventions for managing ponatinib-induced cardiotoxicity.


Assuntos
Cardiotoxicidade , Cardiopatias , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Calgranulina A/genética , Inflamação/induzido quimicamente
4.
Circ Res ; 131(7): 620-636, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36052698

RESUMO

BACKGROUND: Heart failure is the leading cause of mortality, morbidity, and health care expenditures worldwide. Numerous studies have implicated GSK-3 (glycogen synthase kinase-3) as a promising therapeutic target for cardiovascular diseases. GSK-3 isoforms seem to play overlapping, unique and even opposing functions in the heart. Previously, we have shown that of the 2 isoforms of GSK-3, cardiac fibroblast GSK-3ß acts as a negative regulator of myocardial fibrosis in the ischemic heart. However, the role of cardiac fibroblast-GSK-3α in the pathogenesis of cardiac diseases is completely unknown. METHODS: To define the role of cardiac fibroblast-GSK-3α in myocardial fibrosis and heart failure, GSK-3α was deleted from fibroblasts or myofibroblasts with tamoxifen-inducible Tcf21- or Postn-promoter-driven Cre recombinase. Control and GSK-3α KO mice were subjected to cardiac injury and heart parameters were evaluated. The fibroblast kinome mapping was carried out to delineate molecular mechanism followed by in vivo and in vitro analysis. RESULTS: Fibroblast-specific GSK-3α deletion restricted fibrotic remodeling and preserved function of the injured heart. We observed reductions in cell migration, collagen gel contraction, α-SMA protein levels, and expression of ECM genes in TGFß1-treated KO fibroblasts, indicating that GSK-3α is required for myofibroblast transformation. Surprisingly, GSK-3α deletion did not affect SMAD3 activation, suggesting the profibrotic role of GSK-3α is SMAD3 independent. The molecular studies confirmed decreased ERK signaling in GSK-3α-KO CFs. Conversely, adenovirus-mediated expression of a constitutively active form of GSK-3α (Ad-GSK-3αS21A) in fibroblasts increased ERK activation and expression of fibrogenic proteins. Importantly, this effect was abolished by ERK inhibition. CONCLUSIONS: GSK-3α-mediated MEK-ERK activation is a critical profibrotic signaling circuit in the injured heart, which operates independently of the canonical TGF-ß1-SMAD3 pathway. Therefore, strategies to inhibit the GSK-3α-MEK-ERK signaling circuit could prevent adverse fibrosis in diseased hearts.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Animais , Cardiomiopatias/metabolismo , Colágeno/metabolismo , MAP Quinases Reguladas por Sinal Extracelular , Fibroblastos/metabolismo , Fibrose , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Insuficiência Cardíaca/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Miofibroblastos/metabolismo , Tamoxifeno/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Quinases raf
5.
Cells ; 11(3)2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35159367

RESUMO

Obesity-associated metabolic disorders are rising to pandemic proportions; hence, there is an urgent need to identify underlying molecular mechanisms. Glycogen synthase kinase-3 (GSK-3) signaling is highly implicated in metabolic diseases. Furthermore, GSK-3 expression and activity are increased in Type 2 diabetes patients. However, the isoform-specific role of GSK-3 in obesity and glucose intolerance is unclear. Pharmacological GSK-3 inhibitors are not isoform-specific, and tissue-specific genetic models are of limited value to predict the clinical outcome of systemic inhibiion. To overcome these limitations, we created novel mouse models of ROSA26CreERT2-driven, tamoxifen-inducible conditional deletion of GSK-3 that allowed us to delete the gene globally in an isoform-specific and temporal manner. Isoform-specific GSK-3 KOs and littermate controls were subjected to a 16-week high-fat diet (HFD) protocol. On an HFD, GSK-3α KO mice had a significantly lower body weight and modest improvement in glucose tolerance compared to their littermate controls. In contrast, GSK-3ß-deletion-mediated improved glucose tolerance was evident much earlier in the timeline and extended up to 12 weeks post-HFD. However, this protective effect weakened after chronic HFD (16 weeks) when GSK-3ß KO mice had a significantly higher body weight compared to controls. Importantly, GSK-3ß KO mice on a control diet maintained significant improvement in glucose tolerance even after 16 weeks. In summary, our novel mouse models allowed us to delineate the isoform-specific role of GSK-3 in obesity and glucose tolerance. From a translational perspective, our findings underscore the importance of maintaining a healthy weight in patients receiving lithium therapy, which is thought to work by GSK-3 inhibition mechanisms.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/etiologia , Quinase 3 da Glicogênio Sintase/efeitos adversos , Obesidade/etiologia , Isoformas de Proteínas/metabolismo , Animais , Feminino , Intolerância à Glucose/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Obesidade/fisiopatologia
6.
Front Immunol ; 12: 747780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867973

RESUMO

Regulatory B cells (Breg) are IL-10 producing subsets of B cells that contribute to immunosuppression in the tumor microenvironment (TME). Breg are elevated in patients with lung cancer; however, the mechanisms underlying Breg development and their function in lung cancer have not been adequately elucidated. Herein, we report a novel role for Indoleamine 2, 3- dioxygenase (IDO), a metabolic enzyme that degrades tryptophan (Trp) and the Trp metabolite L-kynurenine (L-Kyn) in the regulation of Breg differentiation in the lung TME. Using a syngeneic mouse model of lung cancer, we report that Breg frequencies significantly increased during tumor progression in the lung TME and secondary lymphoid organs, while Breg were reduced in tumor-bearing IDO deficient mice (IDO-/-). Trp metabolite L-Kyn promoted Breg differentiation in-vitro in an aryl hydrocarbon receptor (AhR), toll-like receptor-4-myeloid differentiation primary response 88, (TLR4-MyD88) dependent manner. Importantly, using mouse models with conditional deletion of IDO in myeloid-lineage cells, we identified a significant role for immunosuppressive myeloid-derived suppressor cell (MDSC)-associated IDO in modulating in-vivo and ex-vivo differentiation of Breg. Our studies thus identify Trp metabolism as a therapeutic target to modulate regulatory B cell function during lung cancer progression.


Assuntos
Linfócitos B Reguladores/imunologia , Carcinoma Pulmonar de Lewis/imunologia , Diferenciação Celular/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Microambiente Tumoral/imunologia , Animais , Carcinoma Pulmonar de Lewis/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo
8.
Cells ; 10(9)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34572061

RESUMO

Heart failure (HF) is a leading cause of morbidity and mortality across the world. Cardiac fibrosis is associated with HF progression. Fibrosis is characterized by the excessive accumulation of extracellular matrix components. This is a physiological response to tissue injury. However, uncontrolled fibrosis leads to adverse cardiac remodeling and contributes significantly to cardiac dysfunction. Fibroblasts (FBs) are the primary drivers of myocardial fibrosis. However, until recently, FBs were thought to play a secondary role in cardiac pathophysiology. This review article will present the evolving story of fibroblast biology and fibrosis in cardiac diseases, emphasizing their recent shift from a supporting to a leading role in our understanding of the pathogenesis of cardiac diseases. Indeed, this story only became possible because of the emergence of FB-specific mouse models. This study includes an update on the advancements in the generation of FB-specific mouse models. Regarding the underlying mechanisms of myocardial fibrosis, we will focus on the pathways that have been validated using FB-specific, in vivo mouse models. These pathways include the TGF-ß/SMAD3, p38 MAPK, Wnt/ß-Catenin, G-protein-coupled receptor kinase (GRK), and Hippo signaling. A better understanding of the mechanisms underlying fibroblast activation and fibrosis may provide a novel therapeutic target for the management of adverse fibrotic remodeling in the diseased heart.


Assuntos
Cardiomiopatias/patologia , Fibroblastos/patologia , Fibrose/patologia , Miofibroblastos/patologia , Animais , Cardiomiopatias/etiologia , Modelos Animais de Doenças , Fibrose/etiologia , Camundongos
9.
PLoS Pathog ; 17(8): e1009805, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34415976

RESUMO

Tuberculosis (TB) remains a major health problem throughout the world with one third of the population latently infected and ~1.74 million deaths annually. Current therapy consists of multiple antibiotics and a lengthy treatment regimen, which is associated with risk for the generation of drug-resistant Mycobacterium tuberculosis variants. Therefore, alternate host directed strategies that can shorten treatment length and enhance anti-TB immunity during the treatment phase are urgently needed. Here, we show that Luteolin, a plant-derived hepatoprotective immunomodulator, when administered along with isoniazid as potential host directed therapy promotes anti-TB immunity, reduces the length of TB treatment and prevents disease relapse. Luteolin also enhances long-term anti-TB immunity by promoting central memory T cell responses. Furthermore, we found that Luteolin enhances the activities of natural killer and natural killer T cells, both of which exhibit antitubercular attributes. Therefore, the addition of Luteolin to conventional antibiotic therapy may provide a means to avoid the development of drug-resistance and to improve disease outcome.


Assuntos
Antituberculosos/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Imunoterapia/métodos , Isoniazida/farmacologia , Luteolina/farmacologia , Mycobacterium tuberculosis/imunologia , Tuberculose/tratamento farmacológico , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Quimioterapia Combinada , Fatores Imunológicos , Isoniazida/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/imunologia
10.
Pharmacol Res ; 169: 105605, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33965510

RESUMO

Heart Failure (HF) is the leading cause of death worldwide. Myocardial fibrosis, one of the clinical manifestations implicated in almost every form of heart disease, contributes significantly to HF development. However, there is no approved drug specifically designed to target cardiac fibrosis. Nintedanib (NTB) is an FDA approved tyrosine kinase inhibitor for idiopathic pulmonary fibrosis (IPF) and chronic fibrosing interstitial lung diseases (ILD). The favorable clinical outcome of NTB in IPF patients is well established. Furthermore, NTB is well tolerated in IPF patients irrespective of cardiovascular comorbidities. However, there is a lack of direct evidence to support the therapeutic efficacy and safety of NTB in cardiac diseases. In this study we examined the effects of NTB treatment on cardiac fibrosis and dysfunction using a murine model of HF. Specifically, 10 weeks old C57BL/6J male mice were subjected to Transverse Aortic Constriction (TAC) surgery. NTB was administered once daily by oral gavage (50 mg/kg) till 16 weeks post-TAC. Cardiac function was monitored by serial echocardiography. Histological analysis and morphometric studies were performed at 16 weeks post-TAC. In the control group, systolic dysfunction started developing from 4 weeks post-surgery and progressed till 16 weeks. However, NTB treatment prevented TAC-induced cardiac functional decline. In another experiment, NTB treatment was stopped at 8 weeks, and animals were followed till 16 weeks post-TAC. Surprisingly, NTB's beneficial effect on cardiac function was maintained even after treatment interruption. NTB treatment remarkably reduced cardiac fibrosis as confirmed by Masson's trichrome staining and decreased expression of collagen genes (COL1A1, COL3A1). Compared to the TAC group, NTB treated mice showed a lower HW/TL ratio and cardiomyocyte cross-sectional area. NTB treatment reduced myocardial and systemic inflammation by inhibiting pro-inflammatory subsets and promoting regulatory T cells (Tregs). Our in vitro studies demonstrated that NTB prevents myofibroblast transformation, TGFß1-induced SMAD3 phosphorylation, and the production of fibrogenic proteins (Fibronectin-1, α-SMA). However, NTB promoted immunosuppressive phenotype in Tregs, and altered vital signaling pathways in isolated cardiac fibroblast and cardiomyocytes, suggesting that its biological effect and underlying cardiac protection mechanisms are not limited to fibroblast and fibrosis alone. Our findings provide a proof of concept for repurposing NTB to combat adverse myocardial fibrosis and encourage the need for further validation in large animal models and subsequent clinical development for HF patients.


Assuntos
Reposicionamento de Medicamentos , Insuficiência Cardíaca/tratamento farmacológico , Indóis/uso terapêutico , Remodelação Ventricular/efeitos dos fármacos , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Reposicionamento de Medicamentos/métodos , Ecocardiografia , Citometria de Fluxo , Imunofluorescência , Coração/efeitos dos fármacos , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Ratos , Reação em Cadeia da Polimerase em Tempo Real
11.
Lab Invest ; 100(12): 1503-1516, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32572176

RESUMO

Breast cancer (BCa) proliferates within a complex, three-dimensional microenvironment amid heterogeneous biochemical and biophysical cues. Understanding how mechanical forces within the tumor microenvironment (TME) regulate BCa phenotype is of great interest. We demonstrate that mechanical strain enhanced the proliferation and migration of both estrogen receptor+ and triple-negative (TNBC) human and mouse BCa cells. Furthermore, a critical role for exosomes derived from cells subjected to mechanical strain in these pro-tumorigenic effects was identified. Exosome production by TNBC cells increased upon exposure to oscillatory strain (OS), which correlated with elevated cell proliferation. Using a syngeneic, orthotopic mouse model of TNBC, we identified that preconditioning BCa cells with OS significantly increased tumor growth and myeloid-derived suppressor cells (MDSCs) and M2 macrophages in the TME. This pro-tumorigenic myeloid cell enrichment also correlated with a decrease in CD8+ T cells. An increase in PD-L1+ exosome release from BCa cells following OS supported additive T cell inhibitory functions in the TME. The role of exosomes in MDSC and M2 macrophage was confirmed in vivo by cytotracking fluorescent exosomes, derived from labeled 4T1.2 cells, preconditioned with OS. In addition, in vivo internalization and intratumoral localization of tumor-cell derived exosomes was observed within MDSCs, M2 macrophages, and CD45-negative cell populations following direct injection of fluorescently-labeled exosomes. Our data demonstrate that exposure to mechanical strain promotes invasive and pro-tumorigenic phenotypes in BCa cells, indicating that mechanical strain can impact the growth and proliferation of cancer cell, alter exosome production by BCa, and induce immunosuppression in the TME by dampening anti-tumor immunity.


Assuntos
Fenômenos Biomecânicos , Neoplasias da Mama , Estresse Mecânico , Microambiente Tumoral , Animais , Fenômenos Biomecânicos/imunologia , Fenômenos Biomecânicos/fisiologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/fisiopatologia , Carcinogênese , Movimento Celular , Proliferação de Células , Exossomos/metabolismo , Feminino , Humanos , Tolerância Imunológica , Células MCF-7 , Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Microambiente Tumoral/imunologia , Microambiente Tumoral/fisiologia
12.
J Clin Med ; 9(6)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549293

RESUMO

In light of the favorable outcomes of few small, non-randomized clinical studies, the Food and Drug Administration (FDA) has issued an Emergency Use Authorization (EUA) to Hydroxychloroquine (HCQ) for hospitalized coronavirus disease 2019 (COVID-19) patients. In fact, subsequent clinical studies with COVID-19 and HCQ have reported limited efficacy and poor clinical benefits. Unfortunately, a robust clinical trial for its effectiveness is not feasible at this emergency. Additionally, HCQ was suspected of causing cardiovascular adverse reactions (CV-AEs), but it has never been directly investigated. The objective of this pharmacovigilance analysis was to determine and characterize HCQ-associated cardiovascular adverse events (CV-AEs). We performed a disproportionality analysis of HCQ-associated CV-AEs using the FDA adverse event reporting system (FAERS) database. The FAERS database, comprising more than 11,901,836 datasets and 10,668,655 patient records with drug-adverse reactions, was analyzed. The disproportionality analysis was used to calculate the reporting odds ratios (ROR) with 95% confidence intervals (CI) to predict HCQ-associated CV-AEs. HCQ was associated with higher reporting of right ventricular hypertrophy (ROR: 6.68; 95% CI: 4.02 to 11.17), left ventricular hypertrophy (ROR: 3.81; 95% CI: 2.57 to 5.66), diastolic dysfunction (ROR: 3.54; 95% CI: 2.19 to 5.71), pericarditis (ROR: 3.09; 95% CI: 2.27 to 4.23), torsades de pointes (TdP) (ROR: 3.05; 95% CI: 2.30 to 4.10), congestive cardiomyopathy (ROR: 2.98; 95% CI: 2.01 to 4.42), ejection fraction decreased (ROR: 2.41; 95% CI: 1.80 to 3.22), right ventricular failure (ROR: 2.40; 95% CI: 1.64 to 3.50), atrioventricular block complete (ROR: 2.30; 95% CI: 1.55 to 3.41) and QT prolongation (ROR: 2.09; 95% CI: 1.74 to 2.52). QT prolongation and TdP are most relevant to the COVID-19 treatment regimen of high doses for a comparatively short period and represent the most common HCQ-associated AEs. The patients receiving HCQ are at higher risk of various cardiac AEs, including QT prolongation and TdP. These findings highlight the urgent need for prospective, randomized, controlled studies to assess the risk/benefit ratio of HCQ in the COVID-19 setting before its widespread adoption as therapy.

13.
Cells ; 9(5)2020 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456301

RESUMO

Cellular cross-talk within the tumor microenvironment (TME) by exosomes is known to promote tumor progression. Tumor promoting macrophages with an M2 phenotype are suppressors of anti-tumor immunity. However, the impact of tumor-derived exosomes in modulating macrophage polarization in the lung TME is largely unknown. Herein, we investigated if lung tumor-derived exosomes alter transcriptional and bioenergetic signatures of M0 macrophages and polarize them to an M2 phenotype. The concentration of exosomes produced by p53 null H358 lung tumor cells was significantly reduced compared to A549 (p53 wild-type) lung tumor cells, consistent with p53-mediated regulation of exosome production. In co-culture studies, M0 macrophages internalized tumor-derived exosomes, and differentiated into M2 phenotype. Importantly, we demonstrate that tumor-derived exosomes enhance the oxygen consumption rate of macrophages, altering their bioenergetic state consistent with that of M2 macrophages. In vitro co-cultures of M0 macrophages with H358 exosomes demonstrated that exosome-induced M2 polarization may be p53 independent. Murine bone marrow cells and bone marrow-derived myeloid-derived suppressor cells (MDSCs) co-cultured with lewis lung carcinoma (LLC)-derived exosomes differentiated to M2 macrophages. Collectively, these studies provide evidence for a novel role for lung tumor-exosomes in M2 macrophage polarization, which then offers new therapeutic targets for immunotherapy of lung cancer.


Assuntos
Polaridade Celular , Exossomos/metabolismo , Neoplasias Pulmonares/metabolismo , Macrófagos/patologia , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Respiração Celular , Endocitose , Metabolismo Energético , Molécula de Adesão da Célula Epitelial/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/patologia , Fatores de Tempo , Proteína Supressora de Tumor p53/metabolismo
14.
Respir Res ; 21(1): 104, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375889

RESUMO

BACKGROUND: Recent studies suggest that alterations in lung microbiome are associated with occurrence of chronic lung diseases and transplant rejection. To investigate the host-microbiome interactions, we characterized the airway microbiome and metabolome of the allograft (transplanted lung) and native lung of single lung transplant recipients. METHODS: BAL was collected from the allograft and native lungs of SLTs and healthy controls. 16S rRNA microbiome analysis was performed on BAL bacterial pellets and supernatant used for metabolome, cytokines and acetylated proline-glycine-proline (Ac-PGP) measurement by liquid chromatography-high-resolution mass spectrometry. RESULTS: In our cohort, the allograft airway microbiome was distinct with a significantly higher bacterial burden and relative abundance of genera Acinetobacter & Pseudomonas. Likewise, the expression of the pro-inflammatory cytokine VEGF and the neutrophil chemoattractant matrikine Ac-PGP in the allograft was significantly higher. Airway metabolome distinguished the native lung from the allografts and an increased concentration of sphingosine-like metabolites that negatively correlated with abundance of bacteria from phyla Proteobacteria. CONCLUSIONS: Allograft lungs have a distinct microbiome signature, a higher bacterial biomass and an increased Ac-PGP compared to the native lungs in SLTs compared to the native lungs in SLTs. Airway metabolome distinguishes the allografts from native lungs and is associated with distinct microbial communities, suggesting a functional relationship between the local microbiome and metabolome.


Assuntos
Aloenxertos/fisiologia , Transplante de Pulmão/métodos , Pulmão/fisiologia , Metaboloma/fisiologia , Microbiota/fisiologia , Transplantados , Idoso , Aloenxertos/microbiologia , Feminino , Redes Reguladoras de Genes/fisiologia , Humanos , Pulmão/microbiologia , Masculino , Pessoa de Meia-Idade
15.
Cells ; 9(5)2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365965

RESUMO

Obesity is an independent risk factor for cardiovascular diseases (CVD), including heart failure. Thus, there is an urgent need to understand the molecular mechanism of obesity-associated cardiac dysfunction. We recently reported the critical role of cardiomyocyte (CM) Glycogen Synthase Kinase-3 beta (GSK-3ß) in cardiac dysfunction associated with a developing obesity model (deletion of CM-GSK-3ß prior to obesity). In the present study, we investigated the role of CM-GSK-3ß in a clinically more relevant model of established obesity (deletion of CM-GSK-3ß after established obesity). CM-GSK-3ß knockout (GSK-3ßfl/flCre+/-) and controls (GSK-3ßfl/flCre-/-) mice were subjected to a high-fat diet (HFD) in order to establish obesity. After 12 weeks of HFD treatment, all mice received tamoxifen injections for five consecutive days to delete GSK-3ß specifically in CMs and continued on the HFD for a total period of 55 weeks. To our complete surprise, CM-GSK-3ß knockout (KO) animals exhibited a globally improved glucose tolerance and maintained normal cardiac function. Mechanistically, in stark contrast to the developing obesity model, deleting CM-GSK-3ß in obese animals did not adversely affect the GSK-3αS21 phosphorylation (activity) and maintained canonical ß-catenin degradation pathway and cardiac function. As several GSK-3 inhibitors are in the trial to treat various chronic conditions, including metabolic diseases, these findings have important clinical implications. Specifically, our results provide critical pre-clinical data regarding the safety of GSK-3 inhibition in obese patients.


Assuntos
Deleção de Genes , Glucose/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Testes de Função Cardíaca , Coração/fisiopatologia , Miócitos Cardíacos/enzimologia , Obesidade/enzimologia , Obesidade/fisiopatologia , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Fenótipo , Transdução de Sinais , Remodelação Ventricular
16.
PLoS Pathog ; 16(5): e1008356, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32437421

RESUMO

Tuberculosis (TB) is one of the deadliest diseases, claiming ~2 million deaths annually worldwide. The majority of people in TB endemic regions are vaccinated with Bacillus Calmette Guerin (BCG), which is the only usable vaccine available. BCG is efficacious against meningeal and disseminated TB in children, but protective responses are relatively short-lived and fail to protect against adult pulmonary TB. The longevity of vaccine efficacy critically depends on the magnitude of long-lasting central memory T (TCM) cells, a major source of which is stem cell-like memory T (TSM) cells. These TSM cells exhibit enhanced self-renewal capacity as well as to rapidly respond to antigen and generate protective poly-functional T cells producing IFN-γ, TNF-α, IL-2 and IL-17. It is now evident that T helper Th 1 and Th17 cells are essential for host protection against TB. Recent reports have indicated that Th17 cells preserve the molecular signature for TSM cells, which eventually differentiate into IFN-γ-producing effector cells. BCG is ineffective in inducing Th17 cell responses, which might explain its inadequate vaccine efficacy. Here, we show that revaccination with BCG along with clofazimine treatment promotes TSM differentiation, which continuously restores TCM and T effector memory (TEM) cells and drastically increases vaccine efficacy in BCG-primed animals. Analyses of these TSM cells revealed that they are predominantly precursors to host protective Th1 and Th17 cells. Taken together, these findings revealed that clofazimine treatment at the time of BCG revaccination provides superior host protection against TB by increasing long-lasting TSM cells.


Assuntos
Vacina BCG/imunologia , Vacina BCG/metabolismo , Clofazimina/farmacologia , Memória Imunológica/imunologia , Animais , Vacina BCG/farmacologia , Clofazimina/metabolismo , Quimioterapia Combinada/métodos , Feminino , Imunização Secundária/métodos , Imunogenicidade da Vacina/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/imunologia , Células-Tronco/imunologia , Células Th1/imunologia , Células Th17/imunologia , Tuberculose/imunologia , Tuberculose Pulmonar/imunologia
17.
Int J Cardiol ; 316: 214-221, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32470534

RESUMO

The advent of tyrosine kinase inhibitors (TKIs) targeted therapy revolutionized the treatment of chronic myeloid leukemia (CML) patients. However, cardiotoxicity associated with these targeted therapies puts the cancer survivors at higher risk. Ponatinib is a third-generation TKI for the treatment of CML patients having gatekeeper mutation T315I, which is resistant to the first and second generation of TKIs, namely, imatinib, nilotinib, dasatinib, and bosutinib. Multiple unbiased screening from our lab and others have identified ponatinib as most cardiotoxic FDA approved TKI among the entire FDA approved TKI family (total 50+). Indeed, ponatinib is the only treatment option for CML patients with T315I mutation. This review focusses on the cardiovascular risks and mechanism/s associated with CML TKIs with a particular focus on ponatinib cardiotoxicity. We have summarized our recent findings with transgenic zebrafish line harboring BNP luciferase activity to demonstrate the cardiotoxic potential of ponatinib. Additionally, we will review the recent discoveries reported by our and other laboratories that ponatinib primarily exerts its cardiotoxicity via an off-target effect on cardiomyocyte prosurvival signaling pathways, AKT and ERK. Finally, we will shed light on future directions for minimizing the adverse sequelae associated with CML-TKIs.


Assuntos
Antineoplásicos , Cardiotoxicidade , Animais , Antineoplásicos/efeitos adversos , Resistencia a Medicamentos Antineoplásicos , Humanos , Imidazóis , Inibidores de Proteínas Quinases/efeitos adversos , Piridazinas , Peixe-Zebra
18.
Redox Biol ; 18: 54-64, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986209

RESUMO

Chronic inflammation involving both innate and adaptive immune cells is implicated in the pathogenesis of asthma. Intercellular communication is essential for driving and resolving inflammatory responses in asthma. Emerging studies suggest that extracellular vesicles (EVs) including exosomes facilitate this process. In this report, we have used a range of approaches to show that EVs contain markers of mitochondria derived from donor cells which are capable of sustaining a membrane potential. Further, we propose that these participate in intercellular communication within the airways of human subjects with asthma. Bronchoalveolar lavage fluid of both healthy volunteers and asthmatics contain EVs with encapsulated mitochondria; however, the % HLA-DR+ EVs containing mitochondria and the levels of mitochondrial DNA within EVs were significantly higher in asthmatics. Furthermore, mitochondria are present in exosomes derived from the pro-inflammatory HLA-DR+ subsets of airway myeloid-derived regulatory cells (MDRCs), which are known regulators of T cell responses in asthma. Exosomes tagged with MitoTracker Green, or derived from MDRCs transduced with CellLight Mitochondrial GFP were found in recipient peripheral T cells using a co-culture system, supporting direct exosome-mediated cell-cell transfer. Importantly, exosomally transferred mitochondria co-localize with the mitochondrial network and generate reactive oxygen species within recipient T cells. These findings support a potential novel mechanism of cell-cell communication involving exosomal transfer of mitochondria and the bioenergetic and/or redox regulation of target cells.


Assuntos
Asma/patologia , Exossomos/patologia , Mitocôndrias/patologia , Células Mieloides/patologia , Comunicação Celular , DNA Mitocondrial/análise , Antígenos HLA-DR/análise , Humanos , Oxirredução , Espécies Reativas de Oxigênio/análise
19.
J Immunol ; 201(1): 278-295, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29752311

RESUMO

Myeloid-derived suppressor cells (MDSCs) are known suppressors of antitumor immunity, affecting amino acid metabolism and T cell function in the tumor microenvironment. However, it is unknown whether MDSCs regulate B cell responses during tumor progression. Using a syngeneic mouse model of lung cancer, we show reduction in percentages and absolute numbers of B cell subsets including pro-, pre-, and mature B cells in the bone marrow (BM) of tumor-bearing mice. The kinetics of this impaired B cell response correlated with the progressive infiltration of MDSCs. We identified that IL-7 and downstream STAT5 signaling that play a critical role in B cell development and differentiation were also impaired during tumor progression. Global impairment of B cell function was indicated by reduced serum IgG levels. Importantly, we show that anti-Gr-1 Ab-mediated depletion of MDSCs not only rescued serum IgG and IL-7 levels but also reduced TGF-ß1, a known regulator of stromal IL-7, suggesting MDSC-mediated regulation of B cell responses. Furthermore, blockade of IL-7 resulted in reduced phosphorylation of downstream STAT5 and B cell differentiation in tumor-bearing mice and administration of TGF-ß-blocking Ab rescued these IL-7-dependent B cell responses. Adoptive transfer of BM-derived MDSCs from tumor-bearing mice into congenic recipients resulted in significant reductions of B cell subsets in the BM and in circulation. MDSCs also suppressed B cell proliferation in vitro in an arginase-dependent manner that required cell-to-cell contact. Our results indicate that tumor-infiltrating MDSCs may suppress humoral immune responses and promote tumor escape from immune surveillance.


Assuntos
Linfócitos B/imunologia , Interleucina-7/imunologia , Neoplasias Pulmonares/imunologia , Células Supressoras Mieloides/imunologia , Fator de Transcrição STAT5/imunologia , Evasão Tumoral/imunologia , Transferência Adotiva , Animais , Linfócitos B/citologia , Células da Medula Óssea/imunologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Feminino , Imunoglobulina G/sangue , Interleucina-7/sangue , Camundongos , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/transplante , Fosforilação , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta/sangue , Microambiente Tumoral/imunologia
20.
Front Immunol ; 8: 739, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713372

RESUMO

Curcumin, the bioactive component of turmeric also known as "Indian Yellow Gold," exhibits therapeutic efficacy against several chronic inflammatory and infectious diseases. Even though considered as a wonder drug pertaining to a myriad of reported benefits, the translational potential of curcumin is limited by its low systemic bioavailability due to its poor intestinal absorption, rapid metabolism, and rapid systemic elimination. Therefore, the translational potential of this compound is specifically challenged by bioavailability issues, and several laboratories are making efforts to improve its bioavailability. We developed a simple one-step process to generate curcumin nanoparticles of ~200 nm in size, which yielded a fivefold enhanced bioavailability in mice over regular curcumin. Curcumin nanoparticles drastically reduced hepatotoxicity induced by antitubercular antibiotics during treatment in mice. Most interestingly, co-treatment of nanoparticle-formulated curcumin along with antitubercular antibiotics dramatically reduced the risk for disease reactivation and reinfection, which is the major shortfall of current antibiotic treatment adopted by Directly Observed Treatment Short-course. Furthermore, nanoparticle-formulated curcumin significantly reduced the time needed for antibiotic therapy to obtain sterile immunity, thereby reducing the possibility of generating drug-resistant variants of the organisms. Therefore, adjunct therapy of nano-formulated curcumin with enhanced bioavailability may be beneficial to treatment of tuberculosis and possibly other diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...